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Abstract  
The present paper attempts to answer the question of whether it is reasonable to 

distinguish mathematical objects ontologically. It aims to demonstrate that 

mathematical objects can be divided into mathematical objects existing on their own 

and mathematical objects constructed by human beings. The present research also 
seeks to answer the questions raised by the philosopher Maco in his communication in 

response to my previous research. The paper presents the view that the ontological 

status of Lie groups and Lie algebras differs according to whether they are complex 

Lie groups and Lie algebras, respectively. Other questions were addressed on the 

status of Hilbert spaces, whether the set of natural numbers and the set of hyperreal 

numbers are independent. The present attempt to answer these questions does not, in 

my opinion, depart from the Wittgensteinian approach to mathematics, which is what 

I am trying to prove. 
Key words: ontological status, mathematical object, Wittgenstein's philosophy of 

mathematics, Lie groups 

 

Introduction 

Attitudes towards mathematical objects and their ontological status vary across 

the mathematical domain. Not surprisingly, research has shown that attitudes of 
prospective mathematics lecturers towards mathematics differ considerably (Jancarík, 

Marcom, Kleinke, 2023). The present paper aims to critically analyse the thesis that 

mathematical objects can be divided into two groups from an ontological point of 

view. The first group are essentially ontological objects in the sense of their Platonic 
existence. I consider the other group of objects problematic from an ontological point 

of view. Since they do not have an established ontological existence, I make the 

conjecture that they are objects constructed by humans (Ambrozy, 2019). I do not 

doubt the utility of mathematical entities from either group; "the utility of 
mathematical objects is somewhat disconnected from their ontological status" 

(Freeman, 2022: 15). Duke argues that the debate between nominalists and those who 

favour the actual association of abstract singular terms with objects may end in a 

compromise (Duke, 2012). Some believe "mathematical objects retain their identity 
through different axiomatisations" (Christopoulou, 2019: 383). In Hilbert, for 

example, we may encounter implicit definitions of basic geometric entities - point, 

line, etc. (Tselishchev, 2013). Husserl presents the view that mathematical objects 

have an ideal nature. This is traced back to Plato. Insofar as Descartes refers to the 
eternal truths of mathematics, this is not Platonism but a view derived from Proclus 

(Hattab, 2016). There is also a structuralist view of the nature of mathematical objects 

- cf. (Pleitz, 2010). Popper seeks to reconcile the position between construction and 

discovery; in his view, this contradiction in mathematics is only illusory (Harada, 
2005). Sucharek perceives the problem more complexly, he asks about the origin of 

the idea (Sucharek 2016). Molini distinguishes between strong and weak 

mathematical objectivity (Molini, 2020). Regarding mathematical Platonism, Baker 

seeks to postulate an Enhanced Indispensability Argument (EIA) to support it (Baker, 
2009). Drekalovic considers this argument applicable only in an ideal mathematical 

framework, i.e., not the whole way the mathematical community produces real 
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mathematical results (Drekalovic, 2022). The view presented in Ambrozy (2019) can 

be supported by the philosophy of mathematics of several philosophers. Of course, 

doubts and objections can be raised against the presented view. These are not 
objections postulated from other positions in the philosophy of mathematics, such as 

logicism and formalism. Some have been raised in correspondence discussions by the 

philosopher Róbert Maco. The latter gives some open questions that are not trivial and 

make the whole conception problematic. 

The present paper builds on my paper (Ambrozy, 2019), in which I argue that 

the ontological status of mathematical objects is not naturalistic. I do not claim that 

the world of mathematical objects is located in the physical world. I argue that the 

world of mathematics is not subjective. In principle, it is possible to divide 
mathematical objects into two domains. The first group consists of mathematical 

objects existing independently of humans and the physical world. Man discovers and 

recognises them irrespective of the cultural environment in which he finds himself 

and his preunderstanding. The results of the top mathematics of the staff of the 

Academies of Sciences correspond to the results of the mathematicians of the natural 

nations, as Claude Levi-Strauss has convincingly demonstrated. Mark Steiner rejects 

Platonism in mathematics (Steiner, 2014). Platonism in mathematics is supported by 

many eminent mathematicians, for example, Gödel (Budiansky, 2021). His two 
incompleteness theorems do not undermine the ontological nature of mathematical 

objects. Thus, there are mathematical objects that exist objectively. In the same way, 

we can construct these mathematical objects. However, there are also mathematical 

objects that, although we can construct them mathematically, would not exist without 
human intervention. The examples include complex numbers and the δ-function, 

which J. von Neumann called the problematic entity. In conceiving the solution 

above, I also drew on discussions with the mathematician Lev Bukovský. 

 
Maco's objections and questions in the field of the ontological nature of 

mathematical objects 

 

Maco suggests that ontological differentiation is too bold in the issue under 

consideration and introduces unnecessary complications. He perceives a view that 
evaluates the apprehension of the issue from an ontological perspective as one that 

introduces a new conglomeration of issues rather than offering a path to a solution. 

Maco negatively evaluates the above perspective as hardly viable; he considers the 

division outlined unsustainable. His objections are condensed into a few points. 
In the discussions, Maco argues that if the second group of objects in my 

conception contradicts the mathematical laws of a given field and is constructed as 

new (Ambrozy, 2019), in such a case, we need to include negative numbers in it as 

well. This is because they were initially understood as unnatural, as fictitious, because 
this contradicted the rules of what were then considered numbers. This would, 

therefore, mean that, for Maco, real numbers would also be in the realm of 

mathematical constructs. According to this philosopher, the ontological dualism in 

question would also give rise to other new questions to which it is difficult to 
formulate an answer. Can we regard Lie groups, Lie algebras, and Hilbert spaces as 

constructions, or do they apply to the first group of objectively existing mathematical 

objects? If the first group of independently existing objects were real numbers, what 

would be the ontological status of hyperreal numbers? In such a conception, is the set 
of natural numbers independent, or only its elements? I find Maco's counterarguments 

and questions relevant, and the task of the study will be to try to answer them in the 

context of whether they lead up to a falsification of the thesis of the division of 

mathematical objects into independently existing objects and human constructs. 
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Attempt to answer objections and questions 

 

First, I will point out that in my paper, to which Maco responds in the 
correspondence discussion, constructed mathematical entities contradict mathematical 

laws in the field in many ways. I do not claim this in the absolute sense that they 

contradict them in all respects. As a first argument, negative numbers would also 

belong in the field if they violate the rules of what has been taken to be a number. 

We consider it inadequate to proceed in such a way, assuming that the natural 

objectively existing mathematical object is only the current state of knowledge of 

mathematics. "In the opinion of D. E. Smith, an analysis of the languages of the 

Australian tribes showed that thirty of them had no numeral for numbers greater than 
four" (Folta, 2004: 43). Would this mean that, for example, the number 117, a concept 

apparently unknown to these tribes, should be considered, according to such an 

invariant, as a mathematical construct that has no support in existing mathematical 

objects? In this case, confusing a concrete number with an indeterminate concept only 

solves a little. The important factor of when we can speak of a transition from 

practical calculus to a theoretical discipline also plays a role. 

It is well known that Chinese mathematics worked with negative numbers 

more than 2000 years ago. "Like Euclid, this is a compendium of the mathematical 
concepts and techniques which had been developed slowly from perhaps the Zhou (or 

Chou) dynasty (begins c.1000 BCE) through the Western Han dynasty" (Mumford, 

2010: 120). In India, as early as the 4th century BCE, the Arthas¯astra, written by 

Kautilya, exists. It also discusses accounting. This mentions that accounts can show a 
deficit, and people can also have a negative net worth. Here, Kautilya still does not 

speak expresis verbis about negative figures. The Brâhma-sphuta-siddhânta, authored 

by Brahmagupta (7th century) already explicitly deals with the concept of negative 

number (Dutta, 2005). The Brahmagupta "describes how the basic operations work 
with zero" (Svitek, 2023: 173). Certainly, negative numbers can be seen as a natural 

mathematical object, for example, in connection with the notion of debt. In Europe, a 

certain notion of negative numbers can be found in Ptolemy (one case), but it is an 

implicit presence. In contrast, the notion of negative mathematical quantities has to be 
essentially evaporated (Mumford, 2010: 115-119). Meanwhile, Euclid did not use 

either the notion of zero or a negative number. An existing tradition since the 18th 

century B.C., which Ptolemy also reflected, Euclid circumvented the reduction of 

arithmetic and algebra to geometry.  
Negative numbers are mentioned expressly by Al-Khwarizmi in Aljabr w'al 

muqabala, albeit in a single passage, which is the part dealing with multiplication. 

Negative numbers are also found in Leonardo of Pisa. In the course of solving the 

algorithm for solving linear equations in many unknowns, negative numbers appear in 
his work. They take the form of negative money owed. "Leonardo is making the first 

tentative steps towards enlarging the number system to include negatives" (Mumford, 

2010: 130). The universal genius of the 14th century, little appreciated by history, 

Nicole Oresme, in his Tractatus de configurationibus qualitatum et motuum, did not 
reach the postulation of a negative number, a negative numerical value. However, he 

exceeded the limits set by Euclid. The work Summa de arithmetica, geometria, 

proportioni et proportionalita by Luca Pacioli (1445 - 1517) refers to negative 

numbers in the form of debt. The egg in the mathematical example given by Pacioli 
has a negative price. This is not an innovative mathematical treatise but a survey work 

intended to summarise arithmetic, geometry, and applied mathematics knowledge. 

Nota bene, it significantly impacted the development of double-entry bookkeeping. 

Even the eminent mathematician Girolamo Cardano, a 16th-century mathematician, 
admits negative solutions to some of his equations in his solution of 13 cases of the 
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cubic equation and 44 derivative cases. In the chapter On the rule for postulating a 

negative in the book of the same title as Raymond Lull's well-known work Ars 

Magna, he calls them fictitious or negative. Similarly, he expresses a negative number 
in the form of a debt as a negative property. A few generations later, Galileo Galilei. 

This physicist clearly expressed the concept of the negative vertical velocity of a 

projectile at constant acceleration caused by gravity. Rather strikingly, negative 

numerical values were not introduced in their works by such eminent mathematicians 

as René Descartes and Pierre de Fermat. 

It was not until the appearance of John Wallis and his Treatise on Algebra 

(1685) that European mathematics began to embrace negative numbers fully and 

systematically. Isaac Newton took a similar approach to the issue in his Philosophiæ 
Naturalis Principia Mathematica. "In Chapter 16, Addition, Subduction, 

Multiplication and Extraction of Roots in Specious Arithmetic, Wallis defines 

negative numbers as nicely, simply and clearly as you could wish" (Mumford, 2010: 

137); (Vašek, Blaščíková & Nemec, 2022: 2-3). Thus, Wallis was the first 

mathematician in Europe to use the whole number series fully with negative numbers. 

However, as we have seen, he was not the first mathematician in Europe to use the 

notion of a negative number. Like Wallis, Newton also dealt with negative numbers. 

British mathematicians still had reservations about the notion of negative numbers 
150 years after Wallis and Newton's appearance, even though in continental Europe, 

the notion was already part of the itinerary (Maz & Rico, 2007). Euclid and his 

approach seem to have hindered making negative numbers explicit in European 

mathematics for many centuries. Although there are differences in the way cultures 
have developed, how mathematics has progressed in them, and differences in its 

history, it has eventually become conceptually unified. 

Cultural differences worldwide have caused a highly differentiated 

development of mathematics, reflected in the approach to negative numbers. While 
Chinese and Indian philosophy approached them without prejudice, in European 

mathematical culture, negative numbers were discussed only by selected 

mathematicians and often about debt as negative money. In the Arab world, this was 

done by the famous mathematician Al-Khwarizmi. In Europe, negative numbers 
became fully established in theoretical mathematics, mainly thanks to Wallis and 

Newton, yet British mathematicians rejected them for half a century afterward. 

I believe referring to the fact that mathematics has rejected negative numbers 

for some time is not a compelling argument. Rejecting negative numbers was not a 
worldwide mathematical phenomenon; it only happened in Europe. Even there, 

mathematicians such as Leonardo of Pisa, Luca Pacioli, Girolamo Cardano, and the 

physicist Galileo Galilei, at least implicitly, admitted negative numbers. The reference 

to the fact that mathematics at a certain time rejected negative numbers, therefore, 
does not endure since this was not said in unison by eminent mathematicians around 

the world but only by mathematicians who paid tribute to European mathematics. It is, 

therefore, not a universal phenomenon but only a matter of the history of European 

mathematics. 
Even within European mathematics, mathematicians such as Pacioli and 

Cardano appeared, who naturally perceived the negative number as a debt and 

deprivation. Therefore, in my view, it is not appropriate to refer to the fact that there 

was a period in one of the cultures during which there was a distrust of the notion of a 
negative number. Plato, in the dialogue Πολιτεία, clearly discusses the realm of 

mathematical objects that are above the χωρισμός. Operations on numbers generate 

negative numbers in a rather trivial way. Even without Plato's metaphysics, the simple 

notion of length, distance under the surface of a body of water, etc., can no longer 
conjure up the notion of a negative number by any difficult metaphysical abstraction. 

So, I do not see the point of moving it into a second category of man-constructed 
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objects just because it was considered a fictional domain at certain periods in the 

development of European mathematics. It would be an unnecessary adaptation to a 

certain historical paradigm charged with the development of mathematics in a 
particular time and space. As I have shown above, such an approach, literally 

mesmerised by the historical situation, would relocate even the higher natural 

numbers into the man-constructed domain, which is unsustainable. Certainly, such an 

approach would, in Maco's view, also relocate the real numbers into the same domain. 

However, as we have shown, this is not the entire domain of world mathematics and is 

governed by certain developments in mathematics. Moreover, clinging to one 

paradigm and determining the ontological status of the objects of mathematics based 

on that paradigm is unjustifiable. 
The other question Maco raises is whether the set of natural numbers is 

independent in this sense or just its elements. After all, the set of natural numbers is 

the set of all existing natural numbers. To conceive of these numbers as a set, that is, a 

particular set, is not some contorted metaphysical operation, and there is no need to 

create a new entity there. The ontological status of sets of mathematical objects is 

essentially a hidden question after the nature of universals, where one can take a 

position of moderate realism. Just as individual numbers are possible and real, there is 

no problem in perceiving them simultaneously as constituting a set. The set of 
numbers is merely the perception of them as a whole, not the creation of an originally 

non-existent mathematical object that would not have existed without human 

intervention. The elements of any mathematical entity do form a common whole, 

perceivable also as a set. Meanwhile, the set Nn is defined in the standard Fregean 

way through the direct successor relation S, i.e., logical means (Kolman, 2008: 440). 

Next, Maco asks what ontological status Lie groups, Lie algebras, and Hilbert 

spaces would have. A Lie group is a kind of mathematical object that is 
simultaneously a group and a differentiable variety, in which case the group 

operations are compatible with a smooth structure on the variety. These are objects in 

which their two aspects, the algebraic (they are groups) and the geometric or 

differential topological (they are smooth varieties), live side by side in happy 
symbiosis (Fecko, 2004). Sophius Lie discovered this mathematical object in the 

context of the study of solutions of differential equations. Wilhelm Killing also 

discovered them. "Lie groups combine elements from several mathematical fields - 

analysis, algebra and geometry" (Pravda, 2007: 219). To understand a Lie group, one 
must first understand the concept of a group. "A group is a set G with mapping from 

G × G to G (denoted by g ∗ h) that satisfies the following properties:  

i) Associativity: for all g, h, k ∈ G, g ∗ (h ∗ k) = (g ∗ h) ∗ k.  

(ii) There exists a unit element e ∈ G such that for all g ∈ G, g ∗ e = e ∗ g = = 
g. 

(iii) To every g ∈ G there exists an inverse element g-1 ∈ G for which g-1 ∗ g 

= g ∗ g-1 = = e" (Pravda 2007: 220). The group concept is based on associativity, the 

neutral element in operations, and the reciprocal number in every integer. It is the 
study of common properties, where similar pairs of sets and operations are sought, 

which form a group. A simpler variant of the introduction of the Lie group is the 

matrix Lie group. "A matrix Lie group G is any subgroup of the group GL (n, C) for 

which: let Am be any sequence of matrices of G. If Am converges to some matrix A 

of Mn(C), then A ∈ G or A is singular" (Pravda, 2007: 221). Lie algebras show a 

connection with associative linear algebras. It is true that every matrix Lie group 

possesses a corresponding Lie algebra, and the transition from one structure to another 

simplifies the problems to be solved. It can be defined as follows: "Let G be a matrix 

Lie group. The Lie algebra g of this group is the set of all matrices X for which e tX ∈ 

G for all real t" (Pravda, 2007: 225). A Lie algebra can be associated to every Lie 
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group. In general, the definition according to which a Lie group G is a smooth variety 

with group structure is valid, where the multiplication µ: G × G → G is a smooth 

mapping. Smooth varieties are essentially general spaces with sufficient Euclidean 
space properties for derivation and integration possibilities. 

It is necessary to decompose the entities in question into individual 

components. A group as a mathematical entity is a certain arrangement of natural 

mathematical objects. The inverse element, the representation, the associativity, and 

the mathematical operations used here have no unnatural nature to be constructed. Lie 

groups are essentially the union of groups and smooth variety. "The union of the 

algebraic notion of the group and the differential-topological notion of (analytic) 

variety gives rise to a Lie group" (Fecko, 2004: 21). In mathematics, variety means a 
topological space locally similar to an n-dimensional Euclidean space; the vectors in 

question are defined on it. Usually, this term is understood to mean a smooth variety. 

The variety itself can be introduced through maps and atlases. If we have maps to Cn, 

we speak of a complex variety. A complex Lie group is a Lie group, which is also a 

complex variety, i.e., a variety with a holomorphic atlas (Šmíd, 2010: 1). Thus, unless 

a Lie group is a complex Lie group, it is not one of those mathematical objects we 

might consider pure constructions because it uses terms that do not contain 

components that contradict mathematical rules. The complex Lie group encompasses 
the domain of complex numbers; thus, it contains mathematical objects that exist as 

human constructs. It thus has the nature of an object that, as Maco would say, exists 

only for us. 

"The representation of a group automatically induces also a certain (derived) 
representation of its Lie algebra, which is, in general, a homomorphism of the Lie 

algebra to the Lie algebra of (all) linear operators (in a fixed linear space)" (Fecko, 

2004: 22). The notion of a Lie algebra is a simpler object than the group itself. A Lie 

algebra can be assigned to every Lie group (Zlatoš, 2011). As for the complex Lie 
algebra, these are bilinear forms on the complex vector space Cm. We can also 

associate a Lie algebra with a complex Lie group. The same is true for the Lie algebra 

as far as the complex Lie algebra is concerned.  

The ontological status of Hilbert space may also raise questions. In this case, we will 
also proceed with subcomponent analysis. We can conclude that it is a composite 

mathematical object. A Hilbert space E is a vector space E such that all limits of 

arbitrary sequences of vectors from E on which a scalar product is defined. A vector 

space E is a set of E vectors with scalar multiplication and addition operations over 
complex or real numbers. Since the Hilbert space is also defined using complex 

numbers, which I consider to be constructions of mathematicians, it can be considered 

a complex object that is partly a human construction. This is because of the use of an 

imaginary unit expressible by the number i as a solution in the domain of real 
numbers of the unsolvable equation x2 = -1. Solving such an equation requires the 

additional completion of numbers that are an artificial creation of man. This 

contradicts the rules of square roots in real numbers, which do not admit a square root 

of a negative number. 
"In the early 1960s, Robinson succeeded in developing a non-standard 

analysis that yielded the so-called hyperreal numbers, i.e., a system within which 

there are both infinitely small and infinitely large numbers" (Kvasz, 2012: 109). I do 

not consider infinitesimally small and infinitely large numbers as numbers that exist 
realistically; they are constructions of man. Such a number simply cannot exist as a 

real number. Such numbers are useful; they are used in calculating limits, but they are 

not numbers outside the man-made world. 

Maco postulates an argument that suggests that it makes no sense to consider 
two incompatible planes of mathematical objects, as I have argued in my study 

(Ambrozy, 2019). Maco seeks a positive assessment of the role of intuitionism in 
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mathematics (Maco, 2016), to which I have no objection. "At the turn of the 18th and 

19th centuries, the mathematicians recognised that their creations had not been 

formulated in a style of the deductive method of Euclid" (Bukovsky, 2011: 70). After 
all, heuristics within intuition are behind many discoveries and mathematical 

constructions. An example of a successful mathematician who worked with such a 

method can be found in Henri Poincaré. 

I advocate the view postulated in Maco's study: "Humans create some 

mathematical objects; others are in turn discovered by humans" (Maco, 2015: 518). 

He ranks L. Kronecker as the first to hold the view. He is right, but I consider 

Kronecker's emphatic view that everything except integers is man's work to be 

extreme purism. According to him, C. F. Gauss is also in this line, admittedly not in 
close agreement with Kronecker's purism. I add that such a view was also held by the 

eminent Slovak topologist Lev Bukovský, with whom I have discussed the issue 

several times. Maco tries to argue in a Wittgensteinian way. Maco argues first with 

the history of how ancient mathematics got to irrational numbers. I agree with Maco 

that ancient Greek mathematics was limited to such expressions. He devotes a large 

part of the text to analysing Dirac's δ-function. As Maco writes, "It is simply, much 

easier (unencumbered by knowledge) to experience a newly presented object as a 

'construct', which means nothing more than a 'creation' with connotations of 
arbitrariness" (Maco, 2015: 524). These were attempts considered unusual by the 

standards of contemporary mathematicians, and Dirac was aware of the problematic 

nature of this function, mentioned by J. von Neumann and referred to as 

eigenfunctions. I fully agree with Maco that the historical context has no bearing on 
whether we invent or construct mathematical objects, and this is a philosophical 

question, not a question of the history of mathematics or mathematics itself. 

Maco claims that mathematicians have merely encountered problems. Of 

course, the history of mathematics does not change whether a mathematical object 
was discovered or created; that is irrelevant to historians of mathematics. Moreover, 

the fact that many mathematical objects exist independently of humans and can be 

constructed is certainly true. Here, we might be confused by the question that we are 

not concerned with whether an object was discovered or constructed at a given time 
and, in a particular case, in the history of science. The point is what its ontological 

status is, and thus whether it was in principle discoverable (even though it may have 

been constructed in the history of mathematics), or as Maco writes, whether we can 

discover them. They exist objectively, or whether they exist only for us and we can 
only construct them. This does not rule out that we have, by construction in some 

cases, arrived at an objectively existing mathematical object. After all, even positive 

integers can be constructed, as Russell and Whitehead showed in Principia 

Mathematica. Most of mathematics has been constructed in this way based on type 
theory. "The price we have to pay for this is disproportionately high: we have to 

squeeze the whole of mathematics into a considerably complex and artificial type 

structure and, as a precaution, exclude from it also a whole series of propositions and 

definitions which do not lead to controversy at all, but only transgress against the 
hierarchy of type theory" (Zlatoš, 1995: 109). 

Mathematical objects that can only be constructed, cannot be discovered, and 

thus exist only for us are constructed in contradiction to existing rules. They are 

problematic; they introduce a problematic component into mathematics that does not 
conform to mathematical rules. Curved space can be intuitively imagined; even 

general relativity teaches us about its reality, and even so, it corresponds to empirical 

reality (which is not necessary for its objective existence). Complex numbers go 

against the rules of subtraction in the domain of real numbers, so they are a construct. 
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However, they are very useful entities from a pragmatic point of view, for example, in 

calculations related to the projection of the construction of a bridge. 

According to Maco, Wittgenstein "constantly emphasises that in mathematics, 
we are not discoverers but inventors" (Maco, 2015: 527). This may be true, but it is 

certainly not true of Wittgenstein's early period. In the philosophy of mathematics, 

Wittgenstein changed his views considerably during his lifetime. Unlike 

Wittgenstein's general work, the philosophy of mathematics, which can be periodised 

triadically, has two basic stages - early and later. While in the first period of the 

philosophy of mathematics, Wittgenstein tended to the views he expressed in the 

Tractatus; his mathematical constructivism marked the second period. We do not 

consider Maco's interpretation of Wittgenstein's philosophy of mathematics when he 
abandoned the positions of the Tractatus to be relevant. We do mathematics, we create 

mathematics, thinks the Viennese philosopher. He sees it as pure syntax. Mathematics 

is a calculus that performs operations. We construct concrete statements according to 

the rules of calculus; mathematical constructivism is radically defended. Wittgenstein 

was suspicious of non-constructivist proofs. He regarded mathematics as a human 

practice. Wittgenstein criticizes many mathematical entities and practices; as we 

know, he rejects the validity of Gödel's theorems, he rejects mathematical induction, 

he thinks irrational numbers only make sense as rules, he rejects finitism in 
mathematics, etc. Thus, he expresses specific views within the philosophy of 

mathematics, namely in Remarks on the Foundations of Mathematics, Philosophical 

Investigations, and Philosophical Remarks. I do not believe that Wittgenstein's 

concrete positions on the philosophy of mathematics are "mere appearances" (Maco, 
2015: 528). 

The argument used to separate independently existing and constructed 

mathematical arguments is sufficiently Wittgensteinian. The introduction of a new 

mathematical object is considered to be purely constructivist insofar as it changes 
previously clear mathematical concepts and rules in the sense of contradicting them. 

"Logical belief, that is, the law of contradiction that we have held for millennia, is still 

valid in C-logic" (Hao, 2023: 28) (paraconsistent logic). According to Joaquin, the 

deepest paradox of deontic logic is simply ill-formulated (Joaquin, 2023). For 
example, the law of contradiction is also used in metaethics - cf. (Konstańczak, 2017). 

The bending of the space is just a qualitative enrichment, but introducing the square 

root of a negative number is clearly against the rules of arithmetic. It is a construct of 

man that is highly useful and applicable. However, Wittgenstein regards logical rules 
that cannot normally be rejected. Meanwhile, Wittgenstein sees correspondence and 

rule as related to the extent that, as one learns to use one concept, one also learns to 

use the other simultaneously. "According to Wittgenstein's account, our agreement in 

certain facts - or a certain form of life - is also responsible for how we habitually 
make judgments" (Čana, 2011: 114). Čana considers life form a key concept in 

understanding Wittgenstein's rules (Čana, 2016). Insofar as, as with Maco, "we can 

thereby establish some new 'language game'" (Maco, 2015: 528), it is a certain loose 

use of reasoning in a Wittgensteinian way. 

 
Conclusion 

The present paper attempts to justify dividing the ontological nature of 

mathematical objects into two groups. It builds on my earlier study (Ambrozy, 2019). 

I argue that one group of mathematical objects exists independently, independent of 

humans and their intervention. The other group of objects is a human construct. A 
typical example for the first group is the existence of natural numbers, and for the 

second group, the existence of complex numbers. I attempt to answer questions from 

the philosopher Maco's correspondence response to the nature of mathematical objects 

such as hyperreal numbers, Lie groups, Lie algebras, Hilbert space, and others. I have 
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endeavoured to decompose the queried objects into various sub-components and 

answer the questions this way. While we consider hyperreal numbers and Hilbert 

space as human constructs, Lie groups and Lie algebras have a status depending on 
whether they are complex or not. To the objection that the group of human constructs 

includes negative numbers since, in the history of mathematics, mathematicians have 

treated them with reserve, I reply that this has not been the case throughout the world. 

According to such a procedure, we should also consider the higher positive integer 

natural number a construct since some natural peoples have no conceptual name for 

them; they do not know them. I also attempt to follow Wittgenstein's approach to 

mathematics, who also expressed particular views on the philosophy of mathematics, 

arguing that human mathematical constructions are based on violations of 
mathematical rules. 
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